On spaces of maps between complex projective spaces
نویسندگان
چکیده
منابع مشابه
Spaces of algebraic maps from real projective spaces into complex projective spaces
We study the homotopy types of spaces of algebraic (rational) maps from real projective spaces into complex projective spaces. It was already shown in [1] that the inclusion of the first space into the second one is a homotopy equivalence. In this paper we prove that the homotopy types of the terms of the natural ‘degree’ filtration approximate closer and closer the homotopy type of the space o...
متن کاملMaps into projective spaces
We compute the cohomology of the Picard bundle on the desingularization J̃ d (Y ) of the compactified Jacobian of an irreducible nodal curve Y . We use it to compute the cohomology classes of the Brill–Noether loci in J̃ d (Y ). We show that the moduli space M of morphisms of a fixed degree from Y to a projective space has a smooth compactification. As another application of the cohomology of the...
متن کاملRational Homotopy of Spaces of Maps Into Spheres and Complex Projective Spaces
We investigate the rational homotopy classification problem for the components of some function spaces with Sn or cPn as target space.
متن کاملInstanton sheaves on complex projective spaces
We study a class of torsion-free sheaves on complex projective spaces which generalize the much studied mathematical instanton bundles. Instanton sheaves can be obtained as cohomologies of linear monads and are shown to be semistable if its rank is not too large, while semistable torsion-free sheaves satisfying certain cohomological conditions are instanton. We also study a few examples of modu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1984
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1984-0744651-4